Rank factorization and bordering of regular matrices over commutative rings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Associated Graphs of Modules Over Commutative Rings

Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...

متن کامل

Zero-divisor Graphs of Matrices over Commutative Rings

The concept of a zero-divisor graph of a commutative ring was first introduced in Beck (1988), and later redefined in Anderson and Livingston (1999). Redmond (2002) further extended this concept to the noncommutative case, introducing several definitions of a zero-divisor graph of a noncommutative ring. Recently, the diameter and girth of polynomial and power series rings over a commutative rin...

متن کامل

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

متن کامل

MATH 436 Notes: Factorization in Commutative Rings

Proposition 1.1. Let f : R1 → R2 be a homomorphism of rings. If J is an ideal of R2, then f (J) is an ideal of R1 containing ker(f) and furthermore f(f(J)) ⊆ J . Now let f : R1 → R2 be an epimorphism of rings. If J is an ideal of R2 then f(f (J)) = J . If I is an ideal of R1 then f(I) is an ideal of R2. Furthermore we have I ⊆ f (f(I)) = I + ker(f) and thus I = f(f(I)) if I contains ker(f). Thu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2000

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(99)00236-0